ABSTRACT

This research project presents new information about the permanence and durability of contemporary Korean handmade papers, explains the particular methods of traditional hanji papermakers, and introduces the possibility of utilizing the products of Korean papermills in conservation. Traditional Korean papermaking uses a unique technique, known as webal, to form a sheet with fibers distributed evenly in both directions, theoretically resulting in less specific grain direction and an expansion/contraction rate which is even in both directions. In addition, Korean paper employs an exclusive use of paper mulberry known as chamdak or dak in contrast to the typically mixed-fiber furnish of Chinese papers. Like most East Asian papers, the pH of Korean paper is alkaline or neutral. The typical alalis used to prepare fibers are soda ash (Na₂CO₃) and caustic soda (NaOH). A variety of contemporary samples of Korean papers have been artificially aged and evaluated according to Technical Association of the Pulp and Paper Industry (TAPPI) standards under the direction of the Research and Testing Laboratory of the Library of Congress. This project presented interesting data concerning tensile strength, brightness, and pH before and after aging as well as expansion and contraction measurements. The results are very promising for the possibility of using hanji for conservation treatment. One of the suggested advantages of using hanji may be the lack of strong grain direction, which provides a stable and non-competitng repair or lining paper.

1. HANJI: KOREAN HANDMADE PAPER

1.1 History

Many historians say that paper was invented by Ts’ai Lun in 105 C.E. in China—some say even earlier. There is no written record that explains when papermaking skills spread from China to Korea. It is believed that papermaking might have been practiced in Korea as early as the third century C.E. based on a piece of paper found in an ancient tomb, Chehyupechong (108 B.C.E.–313 C.E.).

Korean papermakers established their own methods of papermaking, probably sometime between the third century C.E. and 751 C.E. when the earliest known extant Buddhist text was printed in Korea, the Dharani Sutra or Mugujungwangedaranigyung. The sutra was printed on paper made of paper mulberry called dak in Korean (kozo in Japan). During this time (the third to seventh centuries C.E.) the Korean papermakers developed and adapted methods to suit materials that were locally available. In 610 C.E., Japan received instructions on papermaking from a Korean Buddhist monk, Danjing together with ink sticks, a millstone, and colorants. Through the centuries, hanji became widely used not only for calligraphy and painting but also for flooring, window coverings, crafts, and so on.

1.2 Unique Papermaking Methods

The Korean methods of papermaking established during this time include: a sheet formation technique called webal using a Korean-style mold, a paper layering technique yielding papers called yumyangji, and the method of burnishing called dochim.

The webal method of sheet formation distributes fibers evenly in both directions resulting in paper with no strong grain direction. This study has established that webal papers have an expansion/contraction rate that is even in both directions, a property that could be very useful for paper conservation. Yumyangji papers are strong and even, resulting from alternating the layers when couching a
1.3 Materials

Paper Mulberry, Dak (fig. 1)

The fibers used to make hanji are from indigenous trees grown and harvested in Korea: *Broussonetia kazinoki* Sieb (dak or chamdak tree), *Broussonetia papyrifera* L. Vent., (dak or kuzi tree), *Edgeworthia papirifera* Sieb (samjidak tree), *Wikstroemia trichotomia* (Thunb) Mokino (sandak tree). Dak, paper mulberry, is the primary fiber used to make hanji. Samjidak and sandak are less common.

Through a small survey and analysis of fibers from Korean books from the fifteenth to the twentieth century at the Library of Congress, it is possible to suppose that dak was the major fiber used in Korean book publishing papers. None of the surveyed papers had mixtures of other fibers such as rice straw or bamboo. Each fiber sample was carefully chosen from the book paper and examined with a compound microscope (100x). Dak fiber from these early books appeared identical to the dak fibers in modern handmade papers.

Alkali, Cooking Agent

Traditionally, ashes obtained from burning the stems of plants, such as soybeans, chili, husks, or buckwheat were used as cooking agents to remove the non-cellulosics from the fiber. Sometimes lime (calcium oxide, CaO) was used with wood ash (sodium or potassium hydroxide), but today soda ash (sodium carbonate, Na₂CO₃), or caustic soda (sodium hydroxide, NaOH) is used.

Bleaching Methods

Before beating, fibers are sun-bleached for about five to seven days for top quality papers. Sometimes a chemical, such as sodium hypochlorite (NaOCl), is used to shorten the process of removing specks and to whiten the fibers for lesser quality papers. These “whitened” papers can be recolored to appear like non-chemically bleached papers.

Mold and Screen (fig. 2)

The Korean mold does not have an upper frame or deckle to hold the fibers. The screen rests on a wooden mold with extended “handles” formed by the long sides of the mold. The screen is mainly composed of bamboo or grasses that are joined to create the long laid “lines.” The splints are bound traditionally using twined silk threads coated with persimmon juice. The chain lines of the screen are parallel to the long side of the mold, a distinguishing mark of hanji.

Fiber Preparation

Cooking dak takes place twice. First it is steamed to remove the outer black bark and then again to soften the inner white bark before beating (figs. 3–4). During the second cooking, the inner white bark is steamed or boiled in an alkali solution for about three hours to remove non-cellulosic impurities and to begin fiber separation. Fibers are rinsed well after boiling and are bleached by the sun or with bleaching agents to lighten the color (fig. 5). For lesser quality papers, sometimes color is added back in to give the appearance of being unbleached. After this process, any dark spots left from the outer bark are removed by hand.

Beating (fig. 6)

Refined dak fiber is traditionally beaten by hand on a stone or wooden panel. Wooden stampers are still used. The knife-style beater (known as naginata in Japanese) is
also used to separate long fibers. Hollander beaters are used for higher yield production.

Fiber Dispersal Agent (fig. 7)

The fiber dispersal agent comes from the plant *Hibiscus manihot* L. (*dakpool*, *hwang chok kyu*). The liquid from the root consists of water, lime, sugar, starch, arabinose, rhamnose, galactouronic acid, galactose, lignin, and protein. The agent helps to disperse fibers evenly, to stop long fibers from entangling, to separate the wet paper easily while stacked, and to help form an even thickness of paper by slowing the water drainage through the screen.

Webal Sheet Formation

Dak fibers are put into a vat filled with water, stirred with a stick, and mixed thoroughly. *Dakpool* is added to help the fibers disperse evenly and to stop them from sinking in the water during the sheet formation. The unique traditional Korean technique of sheet formation, *webal*, is one of the important characteristics that differentiate

Fig. 3. Cooking white bark with alkali to remove non-cellulosics. Photo courtesy of FIDES.

Fig. 4. Evaluating the white bark during cooking. Photo courtesy of FIDES.

Fig. 5. Rinsing the cooked white bark after cooking. Photo courtesy of FIDES.

Fig. 6. Traditional beating method with stick. Photo courtesy of FIDES.

Fig. 7. *Dakpool* (dispersal agent), *Hibiscus manihot*. Photo courtesy of FIDES.
Fig. 8. Initial dip of *webal* method of sheet forming. Photo courtesy of FIDES.

Fig. 9. Fibers flowing off the opposite side of the mold. Photo courtesy of FIDES.

Fig. 10. Dipping left side of the mold into vat. Photo courtesy of FIDES.

Fig. 11. Swinging mold to remove excess fibers. Photo courtesy of FIDES.

Fig. 12. Dipping the right side of the mold into vat. Photo courtesy of FIDES.

Fig. 13. Mold and deckle for *sangbal* method. Photo courtesy of FIDES.
Korean paper from other Asian papers. The mold is sus-
pended by only one central string at the far end of the
mold. The papermaker scoops the fibers onto a mold that
has no top frame or deckle by dipping the closest side of
the mold into the vat. The papermaker pulls the mold
towards the front of the vat and then quickly lifts the clos-
est end of the mold to let the fibers flow off the opposite
side (figs. 8–9). The papermaker then dips the left side of
the mold to pick up fibers and swings the mold from left
to right, letting the fibers flow off the right side (fig.
10–11). This process is repeated, dipping the right side fir

Ssangbal Sheet Formation

After the 1900s, Korean papermakers started using the
Japanese way of sheet formation called ssangbal, as well as
webal. For the ssangbal method, a mold with a deckle is used
(fig. 13). The papermakers dip the mold into the water
towards themselves first, shake the mold front to back
repeatedly, and then slant the mold down at the far edge to
toss off excess fibers (figs. 14–16). Fibers align themselves
with the direction of motion which makes a clear grain
direction in the paper. Ssangbal papers are dipped multiple
times, but wet sheets are not usually layered.

Webal Layered Papers

During couching, one sheet is layered on top of anoth-
er from the opposite direction to even out the thickness
of the paper (figs. 17–19). All webal paper is multi-layered
and is called yumyangji (yin-yang sheet). A string is used to
separate the layered sheets to ease parting. This process
ensures a strong paper.

Drying

Traditionally papers are air-dried on wooden boards
(fig. 20). These days a steam-heated stainless steel panel is
used for drying by brushing the paper onto the panel to
dry (fig. 21).

Dochim, Burnishing

Korean handmade papers can be burnished by a pro-
cess called dochim. One damp sheet is laid between every
ten sheets, and one hundred sheets are then piled up in
this way. A wooden board is placed on the top of this stack
and weighted down with stones. The stack is left for a day
to let the moisture distribute through all the papers. The
board is removed and the stack is beaten with a wooden
stick or by a wooden hammer powered by a watermill. If
requested, very dilute rice starch paste is applied on the
surface of each sheet of paper. It acts like a sizing agent and
provides abrasion resistance. Through this process, the
paper texture becomes smoother and the fibers become
more compact.
2. SCIENTIFIC ANALYSIS OF HANJI

2.1 Introduction

This project evaluated a variety of dak (mulberry) papers made in Korea to determine their suitability for use in conservation. Four handmade papers identified as high quality papers, two bleached and two colored papers, a paper with 70% pulp, and a machine-made paper were chosen. Of the four high quality papers, three were made using the webal method and one with the ssangbal method of sheet formation.

The papers were evaluated according to Technical Association of the Pulp and Paper Industry (TAPPI) standards under the direction of the Research and Testing Laboratory of the Library of Congress. The intention was to evaluate their physical strength, brightness, and pH and

Fig. 17. Sheet is couched onto post of wet sheets. Photo courtesy of FIDES.

Fig. 18. Rolling log across post of wet sheets to remove bubbles. Photo courtesy of FIDES.

Fig. 19. A blue string is used to separate sheets on post of wet sheets. Photo courtesy of FIDES.

Fig. 20. Drying by brushing individual sheets onto heated stainless steel drum. Photo courtesy of FIDES.

Fig. 21. Traditional method of drying sheets on wooden boards. Photo courtesy of FIDES.
to predict their “permanence” or lasting quality by comparing the decline they suffered in physical strength, brightness, and pH after subjecting the papers to accelerated aging at 90°C and 50% relative humidity for 28 days. Tensile energy absorption was chosen to evaluate strength rather than fold endurance due to the extreme thinness of some of the samples along with the frequency of larger fiber clumps. Expansion and contraction measurements were taken by measuring before and after wetting out.

2.2 Choice of Papers

Eight paper samples produced in South Korea were chosen according to the differences in sheet formation, alkali, bleaching, and drying method. No papers contained a filler or starch sizing (table 1).

2.3 Testing and Evaluation Methods

Artificial Aging: TAPPI T402 and LC Humid Oven Aging Procedure

Sample pieces of each paper were preconditioned according to TAPPI T402 for 48 hours in a 23°C and 50% RH TAPPI room. The samples were interleaved with waterleaf chemically purified wood pulp paper and hung on racks. The samples were aged, free-hanging, for 28 days in a Thermotron humid aging oven at 90°C and 50% RH.

pH: TAPPI T509

pH values were measured by the cold extraction method modified by slurring the sample pulp before measuring with the 809 Titrando by Metrohm. One reading was taken before and after aging of each sample paper.

Brightness: TAPPI T452

The brightness readings were measured by directional reflectance at 457 nm using the Brightmeter Micro S-5 by Technidyne Co. Three readings were taken of each sample paper before and after aging. Due to the thinness of papers, all readings were taken through eight layers to achieve an even brightness reading. The readings were averaged.

Expansion/Contraction Rates

Expansion/contraction rates of webal, ssangbal, and Japanese handmade papers were compared. Squares of paper were cut to 10 x 10 cm. They were measured in both directions after wetting out completely and drying between felts with no weight.

SEM

Webal papers and spots in the machine made paper were photographed with the Cambridge S200 scanning electron microscope.

X-Ray Microanalysis

Traces of metals in the machine-made paper were characterized using x-ray microanalysis with the Kevex (sigma 2) fluorescence probe.

3. RESULTS

pH

Unbuffered mulberry papers typically have a pH in the neutral range. The pH of all tested papers remained within a neutral or close to neutral range before and after aging. MM1 had calcium deposits. None of the other papers are said to have alkaline reserve (table 2 and chart 1).

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Materials</th>
<th>Sheet formation</th>
<th>g/m²</th>
<th>Thickness (mm)</th>
<th>Alkali</th>
<th>Bleaching method</th>
<th>Drying method</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>Dak 100%</td>
<td>Webal</td>
<td>19.1</td>
<td>0.09</td>
<td>soda ash</td>
<td>sun bleach</td>
<td>wood</td>
</tr>
<tr>
<td>W2</td>
<td>Dak 100%</td>
<td>Webal</td>
<td>24.6</td>
<td>0.09</td>
<td>soda ash</td>
<td>sun bleach</td>
<td>wood</td>
</tr>
<tr>
<td>W3</td>
<td>Dak 100%</td>
<td>Webal</td>
<td>38.6</td>
<td>0.13</td>
<td>soda ash</td>
<td>sun bleach</td>
<td>steel</td>
</tr>
<tr>
<td>S1</td>
<td>Dak 100%</td>
<td>Ssangbal</td>
<td>12.8</td>
<td>0.09</td>
<td>soda ash</td>
<td>sun bleach</td>
<td>wood</td>
</tr>
<tr>
<td>S2</td>
<td>Dak 30%, pulp 70%</td>
<td>Ssangbal</td>
<td>45.7</td>
<td>0.13</td>
<td>caustic soda</td>
<td>sun bleach</td>
<td>steel</td>
</tr>
<tr>
<td>S3</td>
<td>Dak 100%</td>
<td>Ssangbal</td>
<td>20.9</td>
<td>0.11</td>
<td>caustic soda</td>
<td>sodium hypochlorite + recolored</td>
<td>steel</td>
</tr>
<tr>
<td>S4</td>
<td>Dak 100%</td>
<td>Ssangbal</td>
<td>52.0</td>
<td>0.18</td>
<td>caustic soda</td>
<td>sodium hypochlorite + recolored</td>
<td>steel</td>
</tr>
<tr>
<td>MM1</td>
<td>Imported dak 100%</td>
<td>Machine made</td>
<td>17.5</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. pH changes before and after aging

<table>
<thead>
<tr>
<th>Korean paper</th>
<th>Before aging</th>
<th>After aging</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>7.14</td>
<td>6.79</td>
<td>-0.35</td>
</tr>
<tr>
<td>W2</td>
<td>7.32</td>
<td>6.68</td>
<td>-0.64</td>
</tr>
<tr>
<td>W3</td>
<td>7.74</td>
<td>6.65</td>
<td>-1.09</td>
</tr>
<tr>
<td>S1</td>
<td>8.19</td>
<td>7.88</td>
<td>-0.31</td>
</tr>
<tr>
<td>S2</td>
<td>7.18</td>
<td>6.63</td>
<td>-0.55</td>
</tr>
<tr>
<td>S3</td>
<td>6.84</td>
<td>6.84</td>
<td>0</td>
</tr>
<tr>
<td>S4</td>
<td>7.18</td>
<td>6.63</td>
<td>-0.55</td>
</tr>
<tr>
<td>MM1</td>
<td>7.19</td>
<td>7.38</td>
<td>+0.19</td>
</tr>
</tbody>
</table>

Table 3. Brightness changes before and after aging

<table>
<thead>
<tr>
<th>Korean paper</th>
<th>Before aging (pts)</th>
<th>After aging (pts)</th>
<th>Change (pts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>47.7</td>
<td>45.1</td>
<td>-2.6</td>
</tr>
<tr>
<td>W2</td>
<td>47.7</td>
<td>47</td>
<td>-0.7</td>
</tr>
<tr>
<td>W3</td>
<td>57.3</td>
<td>52.5</td>
<td>-4.8</td>
</tr>
<tr>
<td>S1</td>
<td>53.1</td>
<td>53.8</td>
<td>-0.7</td>
</tr>
<tr>
<td>S2</td>
<td>75.5</td>
<td>63.9</td>
<td>-11.6</td>
</tr>
<tr>
<td>S3</td>
<td>74.0</td>
<td>63.6</td>
<td>-10.4</td>
</tr>
<tr>
<td>S4</td>
<td>56.5</td>
<td>53.0</td>
<td>-3.5</td>
</tr>
<tr>
<td>MM1</td>
<td>80.9</td>
<td>56.3</td>
<td>-24.6</td>
</tr>
</tbody>
</table>

Chart 1. pH before and after aging

Chart 2. Brightness before and after aging

Table 4. Tensile energy absorption (mean & S.D.) before and after aging

<table>
<thead>
<tr>
<th>Korean paper</th>
<th>g/m²</th>
<th>Before aging</th>
<th>After aging</th>
<th>Retention (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean (N/mm)</td>
<td>Standard deviation</td>
<td>Mean (N/mm)</td>
</tr>
<tr>
<td>W1</td>
<td>19.1</td>
<td>0.03906</td>
<td>0.00364</td>
<td>0.03801</td>
</tr>
<tr>
<td>W2</td>
<td>24.6</td>
<td>0.03592</td>
<td>0.00642</td>
<td>0.02956</td>
</tr>
<tr>
<td>W3</td>
<td>38.6</td>
<td>0.08966</td>
<td>0.01082</td>
<td>0.10592</td>
</tr>
<tr>
<td>S1</td>
<td>12.8</td>
<td>0.02539</td>
<td>0.00328</td>
<td>0.02115</td>
</tr>
<tr>
<td>S2</td>
<td>45.7</td>
<td>0.01447</td>
<td>0.00261</td>
<td>0.01728</td>
</tr>
<tr>
<td>S3</td>
<td>20.9</td>
<td>0.02152</td>
<td>0.00232</td>
<td>0.01781</td>
</tr>
<tr>
<td>S4</td>
<td>52.0</td>
<td>0.04817</td>
<td>0.01649</td>
<td>0.02707</td>
</tr>
<tr>
<td>MM1</td>
<td>17.5</td>
<td>0.01037</td>
<td>0.00222</td>
<td>0.00365</td>
</tr>
</tbody>
</table>

Chart 3. Tensile energy absorption (mean) before and after aging
Brightness Test
A color change of five points is visible. Groundwood paper can change approximately 20 points if aged for 28 days. Significant color change is an indicator of degradation (table 3 and chart 2).

Tensile Energy Absorption
High quality paper should retain at least 80% of its tensile energy absorption (TEA) after aging for 28 days in a free-hanging oven method. This testing method has a high standard deviation rate, particularly in this case when there can be a number of larger fiber clumps. Differences within a 10% range are not considered significant (table 4 and chart 3).

Webal and Ssangbal Expansion and Contraction Rates (table 5)
Webal papers expanded and contracted evenly in both directions and did not change final dimensions. One ssangbal paper expanded and contracted evenly and did not change final dimensions. The other ssangbal paper expanded and contracted evenly and became 0.05 cm smaller in the cross grain direction. The two Japanese handmade kozo papers made in the nagashizuki (i.e., ssangbal) method expanded differently in both directions and became 0.1 to 0.05 cm smaller in both directions.

These results demonstrate that the webal papers do not have a dominant grain direction. The ssangbal and nagashizuki papers do have a grain direction that is specific to each paper.

SEM (fig. 22)
This scanning electron microscope photograph taken at 152x shows the layers of fibers that are oriented in varying directions, the result of the webal method of papermaking. This random fiber orientation contributes to paper strength and even expansion/contraction rates.

X-Ray Microanalysis (fig. 23)
Small brown spots were apparent over the sheet of the machine-made paper (MM1) after aging for 28 days. X-ray analysis characterized many spots as containing iron. Calcium and chlorine were also found in the paper. The photograph in figure 23 was taken at 1260x and shows a tiny spot (20 micrometers) in the shape of a hook that was characterized as iron.

4. CONCLUSION
This study of Korean dak papers looked at a variety of Korean handmade papers to evaluate for permanence and durability. The tests results indicate that the four papers identified as “high quality” (W1, W2, W3, S1) are excellent papers with high ratings for permanence and durability. These handmade 100% dak papers were cooked with soda ash and sun bleached. In a previous study it was verified that using a milder alkali aids the stability of Japanese paper (Uyeda et al. 1999, 119–125). The higher
quality Korean papers retained over eighty percent of their strength and did not visibly discolor after aging. These papers are made using both webal and ssangbal methods.

The results for the “lesser quality” handmade papers are not as clear. Of the two 100% dak papers that were cooked with caustic soda, chemically bleached, and recolored, one paper (S3) showed some discoloration and yet retained eighty percent of its strength after aging. The other paper (S4) did not discolor, but lost almost fifty percent of its strength. The 70% pulp paper (S2) that was cooked with caustic soda and sun-bleached retained all of its strength. This paper discolored visibly, however not significantly.

The machine-made dak paper discolored significantly, lost sixty-five percent of its strength, and developed brown spots after aging. In roughly half of the spots, iron was identified but in the other half, iron was difficult to detect.

One can draw the conclusion that the “higher quality” papers are excellent candidates for conservation use, keeping in mind that the test results refer to these particular paper samples and each batch of paper has the potential to be different. The “lesser quality” papers pose too many uncertainties to consider for conservation. The machine-made paper chosen for this test is not suitable because it discolored and lost significant strength. It may be that other Korean machine-made papers are suitable; these papers would need to be evaluated before using for conservation purposes.

The webal papers chosen for this study had even fiber distribution and maintained a constant expansion/contraction rate in both directions. This characteristic presents the possibility of a paper with useful qualities for some conservation methods such as linings.

The characteristics that cannot be measured by TAPPI methods are the luster of the fibers and the beauty of the sheet that sing out as one handles the “higher quality” papers from Korean papermakers. These papers speak of a long tradition and the finesse of the papermakers who make them. This study was undertaken with much appreciation and hope for papermakers to continue to make such papers.

ACKNOWLEDGMENTS

We would like to acknowledge the assistance of our colleagues, Cindy Connelly Ryan, Michele Youket, Frank Hengemihle, M. L. Sierra, and Dr. Shahani from the Library of Congress Research and Testing Division. Many thanks also to Sonya Lee, from the Korean collection at the Library of Congress, and to Bohyung and Bokyung Kim from FIDES International Co.

REFERENCES

Amlie, Lynn. 1996. Hanji: Korea’s traditional paper. Hand