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a b  s  t  r a  c t

A  new  approach  for  monitoring  the  state of conservation  of cultural  heritage objects  surfaces is being

developed.  The technique  utilizes multi-spectral  imaging,  multivariate  analysis  and statistical  process

control  theory  for  the  automatic detection of  a possible deterioration process,  its  localization  and iden-

tification,  and the wavelengths  most sensitive to detecting  this  before the  human  eye can  detect the

damage  or  potential degradation  changes  occur.  A  series  of virtual  degradation  analyses  were  performed

on images  of parchment  in order  to test the  proposed  algorithm  in controlled  conditions.  The spec-

tral image  of  a  Dead Sea  Scroll  (DSS) parchment,  IAA (Israel Antiquities  Authority) inventory  plate  #

279,  4Q501  Apocryphal Lamentations  B,  taken  during  the  2008 Pilot  of the  DSS  Digitization  Project, was

chosen  for  the  simulation.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The study of cultural heritage, archaeological, historical, artis-

tic and archive, library or  museum objects must be dealt with on

an interdisciplinary level, making use of different experiences and

skills necessary in achieving a  common objective: preservation of

the original object, both substrate and the media that contains the

information on the object.

Conservation science is consistently striving to  find better ways

to preserve cultural heritage objects and to obviate damage liable

to  be caused by environmental or accidental factors. Materials con-

stituting the cultural heritage object are subjected to changes over

time, due to the interaction between the object and the physical

factors (light, temperature, relative humidity, oxygen, particulates),

the chemical factors (atmospheric oxygen, various pollutants) and

the  biological agents (bacteria, fungi, insects, mold). The monitor-

ing of cultural heritage objects over time is  critically important in

order to alert the conservator when potentially damaging changes

are occurring. The method described in this article follows a new

approach in the context of cultural heritage aimed at the auto-

matic and fast detection of a  developing deterioration process, and

its localization and identification. This requires the direct mea-
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surement of the reflectance spectrum of the artifact through a

non-invasive method, leaving the object unchanged for successive

examinations. While our current work involves texts on parchment

and papyrus, the method is  extensible to other objects.

The utilization of multispectral imaging and digital image pro-

cessing can be beneficial for the preservation of cultural heritage

objects. Modern imaging technologies have been having a  signifi-

cant impact on cultural heritage and archaeology in  the last decade.

A number of applications of multispectral imaging in  the field of

cultural heritage are present in  the literature, mainly regarding

characterization studies and artifacts analysis [1–4]. Spectral imag-

ing of manuscripts has been used to improve historical documents

readability [5–7].

For the case of the Dead Sea Scrolls, mostly on parchment, it is

known that the changes in  legibility are driven by changes in  the

parchment reflectance in  the visible. Spectral imaging showed that

the easy-to-read scrolls show significant differences between the

ink and parchment spectra in  the visible, while they are very similar

for hard-to-read ones. However, for the illegible scrolls, the parch-

ment reflectance increases significantly relative to the ink in  the IR,

which is why  infrared photography of the scrolls, done in  the early

1950s was  successful [8,9]. These changes in  reflectance suggest a

natural way  to  monitor the scrolls for changes, namely monitor the

reflectance through repeated imaging, analysis and comparison.

The spectral imaging process obtains a  complete spectrum for

each pixel of the image. The potential applications are innumer-
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able, and have already been applied in the fields of biology and

biomedical applications, pollution control, and other disciplines

[10–12].

There are two main methods of capturing spectral imaging data:

one is to illuminate the sample with broadband light and filter

the image detection, separating wavebands by  filtering between

the object and the camera, while the other method is  to  filter the

illumination or use narrow waveband illumination in  conjunction

with an unfiltered camera. This second method has conservation

advantages due to reduced light levels and heat compared to the

former.

Chemometric techniques provide useful tools for extracting the

systematic information from large and complex datasets. These

methods have already been applied in the field of cultural her-

itage [13,14] for several purposes like provenance and classification

studies, objects and manufacturing techniques characterization,

monitoring and preservation.

A powerful tool to investigate surface degradation process of

artifacts surfaces can be demonstrated through the application of

the statistical process control (SPC) theory [15–18].  This has already

been demonstrated in the monitoring of the conservation state of

wooden objects and canvas painted with inorganic pigments, ana-

lyzed by Raman and IR spectroscopy [19,20].  The application of

multivariate statistical process control approaches to  image data

was first developed for real-time process monitoring and control

[21], for industrial [22] and agricultural [23] image-based problems.

A method based on multispectral imaging coupled to  multivari-

ate analysis is proposed here for monitoring the state of health of

cultural heritage objects surfaces and, in  general, for every kind of

surface whose conservation state needs to  be  monitored. Indus-

trial applications of the same technique can be easily envisaged for

applications including the control of solid catalysts, ion exchange

resins, raw and finite materials.

To test the algorithms a  multispectral image of a  Dead Sea Scroll

(DSS) parchment, IAA (Israel Antiquities Authority) inventory plate

# 279, 4Q501 Apocryphal Lamentations B (dated between 50-25

BCE [24]) was used. The applicability of the approach and its limi-

tations were studied by generating virtual images of the parchment

containing an artificially degraded region.

Then, the application of this monitoring technique to  a  real

situation is briefly presented to  show an example where a  parch-

ment was subjected to  a  real accelerated degradation process.

The changes of the surface were investigated using the proposed

approach.

2. Theory

2.1. Multispectral imaging

Multispectral imaging refers to the capture of multiple images of

specific wavebands of the spectral region, with each image acquired

at a different wavelength [25], obtaining a  complete spectrum for

each pixel of the image. The resulting dataset is  a  3-way data matrix,

also called CUBE, where x  and y axes are the coordinates of the pixels

of the image and in the third dimension there are the reflectances of

the pixels at defined wavelengths. Full application of Multispectral

imaging can typically span the wavelength range from 380 nm to

1100 nm,  capturing ultraviolet (UV), visible (vis) and near infrared

(NIR) spectral regions.

One of the reasons to  acquire digital spectral data is  the

capacity to use image processing software to improve the visible

contrast between ink and written or  painted substrate and con-

sequently enhance legibility of the text. There are several types

of multispectral instruments including spectral scanners, that use

electro-optical devices; spatial scanners, which use prisms, gratings

or beam splitters to  create spectral discrimination; interferomet-

ric analyzers, that typically acquire a  2D  image and scan optical

path differences to obtain a  complete interferogram; hybrid instru-

ments, such as computed tomographic imaging spectrometers and

polarization-dependent rotogram devices [26].

A  system that uses LED illumination to prove the spectral com-

ponent, coupled with a  39 MP  monochrome camera was employed

for the real application example. Cold LED illumination eliminates

a  major objection to spectral imaging that uses broad band light-

ing and then filters the detection side. This method also lets us

acquire high-resolution spectral images (7216 ×  5412 pixels for

each image, sensor array size of 49 × 37 mm), something that  is

not possible with other methods. Details of the system and its

performance for both spectroscopy and color rendering are  in  the

literature [27,28].

2.2.  Principal component analysis (PCA)

The multivariate approach represents the only possible choice

when datasets are characterized by a  large number of  variables

and/or objects. In  the present case the dataset is challenging, due

to  complex correlation patterns related to  the use of a  spectral

description of the surface (obtained from the spectral imaging)

[29,30]. A rationalization of the problem can be obtained by means

of principal component analysis (PCA). PCA may  allow the sepa-

ration of the systematic information from the experimental noise

and the natural fluctuations: this is  true when systematic variations

overcome the variability due to experimental error. PCA provides a

new set of orthogonal variables, a linear combination of the original

components, to describe the system under investigation in a very

compact and efficient way. This analysis can provide several types

of information useful for pattern recognition analyses. The most

important are: the scores (T matrix), namely the projections of the

objects onto the space given by the relevant PCs and the loadings or

weights (L matrix), the coefficients of each original variable in the

linear combination defining each PC.

In the present paper PCA is performed on the characterization

data (3-way data arrays describing the sample when no degrada-

tion is  applied) providing information on the sources of  variability

that  characterize the dataset before the application of a damaging

effect. The degradation images are then projected onto the relevant

PCs calculated from the original characterization data. The analysis

of the scores of the degraded images allows the identification of the

presence of relevant changes caused by the degradation process,

while the analysis of the loadings (calculated on the characteriza-

tion dataset) may suggest the potential causes that produced the

changes.

Using the subset of relevant PCs it is  possible to rebuild the origi-

nal dataset (matrix X′). In this way it is possible to filter, for example,

the experimental noise or the unnecessary information:

X′
=  T ·  L′

The difference between the original data X and the re-calculated

data X′ from the relevant PCs  is  called matrix of the Residuals (R)

and contains the information not  accounted for by the PCs used to

recalculate X′.  The residual matrix is expected to contain only noise

and random fluctuations when it is calculated from the same data

used for calculating the PCs.

In the present case, the residuals matrix was  calculated on

degraded images after re-projection onto the space given by  the

relevant PCs calculated on the characterization data. In this partic-

ular case, the residuals matrix calculated on the degraded images

may  contain systematic information connected to the eventual

presence of new species that were not present during the character-

ization step, species originated from the degradation process. The

re-projection of the degraded images on the PCs calculated from
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the  characterization data gives information on degradation mecha-

nisms that involve species and structures that  were already present

during the characterization. If new species form during the degra-

dation (for example, a  superficial coating degrades making it visible

the layer below), they cannot be  accounted for by the PCs  calculated

on  the characterization data, since these species were not present.

They represent new information [31,32] that will be present in the

R matrix calculated on degraded images. In  this case the R matrix

of the degradations will contain systematic information, beside the

expected random noise and natural system fluctuations: this sys-

tematic information can be detected by performing a  further PCA

on the residual matrix of only degraded images.

2.3. Multivariate statistical process control

SPC concepts and methods are essential in  the monitoring of

industrial processes with the contemporary targets of identifying

when the process presents anomalous behaviors, of preventing the

effect of these anomalous behaviors and of identifying the Special

Cause [15] that produced the anomalous effect. They can be  advan-

tageously applied also to cultural heritage monitoring as showed

by Marengo et al. [19,20].

The objective of this technique is the automatic monitoring of

the current state of preservation of artifacts and changes over time

in order to verify that the object remains in  the state of statistical

control, which means that  no change is  taking place and that no

degradation process is  active.

The first step, like when industrial process control must be

implemented, is to  collect data that permit to  assess and character-

ize the system natural variability. This variability is  characteristic

of the investigated system and permits to  understand when some

relevant, not random, changes take place.

Using Shewhart’s approach, it is possible to calculate a  lower and

an upper control limit (LCL and UCL) that when overridden indicate

a high probability that a Special Cause, namely an anomalous source

of variability, is  present. The LCL and UCL are  calculated using

the  system natural variability evaluated from data collected while

the  system was in  statistical control. If the natural variability of

the experimental setting is  not correctly assessed, false/erroneous

alarms or not sufficiently sensitive control charts for the identifi-

cation of changes would be  obtained. In the present case Shewhart

control charts were constructed using the scores of the relevant PCs

[33,34].

When a sample infringes the natural structure that characterizes

the dataset during the “in-control state” it will show anomalous

score values or residuals and shall be detected and identified by

their analysis.

3. Experimental

The multispectral image of a Dead Sea Scroll parchment (4Q501-

279, Apocryphal Lamentations B)  shown in Fig. 1 was  chosen for the

simulation.

The parchment imaging was performed at 35 wavelengths from

650 to 990 nm in 10 nm steps. Data was captured using a  CRI

Nuance Imaging Spectrophotometer (CRI, MA,  USA) and normal-

ized by dividing for a white reference cube obtained acquiring a

99% reflecting lambertian reflector (Spectralon®) in  order to  have

reflectance spectra between 0 and 1.

In the case of the real application presented to show the

method performance a Eureka Vision LED system from Megavi-

sion (CA, USA) was used. The system has a  39-megapixel Kodak

CCD monochrome sensor array with 7216 ×  5412 pixels and two

EurekaLightTM LED illumination panels. The LED emissions were

centered on the following wavelengths: 365, 450, 465, 505, 535,

Fig. 1. Dead Sea Scrolls image at 960 nm.

592, 625, 638, 700, 735, 780, 870 and 940 nm.  LEDs emit in  narrow

spectral bands over ranges of wavelengths from the near ultraviolet

to  the near infrared. The LED bandwidth ranges from about 10 nm

in UV to 40 nm in  the IR.  LEDs 39 MP images can be obtained in

about 1 min with no  thermal exposure of the object as the mini-

mum necessary light is generated to properly expose the objects to

the spectral band of interest: the samples are safely exposed.

A new 15 cm ×  20 cm calfskin parchment was used (Pergamena

Parchment LLC, NY, USA).

All the algorithms necessary for the treatment of  the data were

developed using MATLAB (R2007b, The MathWork, USA).

4. The applied procedure

The procedure applied in  this research was devoted to  evaluate

the applicability and the limitations of spectral imaging by utilizing

and manipulating simulated data. The following steps constitute

the range of factors under consideration.

(1) Addition of noise – In order to be able to characterize what

can be considered a  natural variability of the images, it is nec-

essary to  have several images of the same object, recorded

over time while no degradation changes have occurred to  the

object. These images must account for all the natural variabil-

ity sources, for example: instrumental noise, small alignment

errors, normal hysteresis of the object, etc. In the present case

noise was artificially added to the spectral images in order to

simulate the natural experimental variability. A white noise

was employed to this purpose. Different images were generated

with the addition of a  random white noise and the images were

successively used to  evaluate the control limits of the Shewhart

charts built on the relevant principal components. In agree-

ment with experimental evidence, the maximum white noise

level was  established to  be 0.01 reflectance units with respect

to the spectral intensity measured in  each pixel for each dif-

ferent wavelength. This procedure was applied to obtain five

different replications of the starting image of the DSS, obtain-

ing at the end five 3-way arrays (image cubes) of the DSS in

presence of the white noise. Five 3-way characterization arrays

were considered sufficient in this case since a  white noise of

known entity was added to simulate the natural variability.

These 3-way arrays were used for calculating the relevant PCs

and the control charts limits. In the present case, two PCs were

considered significant.
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Fig. 2. Loadings of PC1 for  different samplings (a); score-plot of PC1 and PC2 (b);  and loading plot of PC1 and PC2 from IR (left) to  UV (right) (c).

(2) 3-way arrays (CUBEs) unfolding – The 3-way arrays are unfolded

into a bi-dimensional matrix (X) where the columns are the 35

wavelengths and the rows are the pixels of the different images.

The columns are mean centered prior to any statistical analysis.

(3) Sampling of the dataset – A  good characterization of the in-

control natural variability needs several 3-way arrays to  be

processed simultaneously, a process that requires a  large vol-

ume  of memory (in the level of the Giga- or Tera-bytes). A

random selection of individual pixels that preserves both the

macro and micro information present in the 3-way arrays was

then tested. This sampling was performed on the rows of the

data matrix. Different percentages of the number of pixels

present in the images (sampling percentages) were compared

to select the best compromise between memory requirements

and quality of the results. For every 3-way characterization

array, the same random pixels were sampled. A PCA was then

performed on the pixels sampled for each sampling percent-

age considered and the results were compared to the case

where PCA is  applied to  the overall dataset, without pixel selec-

tion. The loadings were compared with the aim to  identify the

minimum percentage of pixels that preserves the information

present in  the cubes, i.e. providing results comparable to the

case where no pixel selection is applied. This procedure allowed

the selection of a  representative subset of pixels, indirectly pre-

serving both macro and micro information. A  percentage of 0.1%

proved to be the minimum allowed sampling percentage.

Fig. 3.  Projection of the scores of PC1 (a) and PC2 (b).
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(4)  Principal component analysis – PCA was then performed on the

five 3-way characterization arrays after pixel selection. This

step enables the description of the in-control natural variability

by means of the relevant PCs that take into account the system-

atic relationships present in  the data. These relationships may

include the covariance structure and the different sources of

systematic information, like the presence of different figures or

different colors. In  the present case two PCs were considered

relevant.

(5) Multivariate control chart – Multivariate Shewhart charts are

then calculated using the scores of the relevant PCs obtained

in  the characterization phase. It  is possible from the training

set data to calculate the upper and lower control limits (UCL

and LCL) that permit to identify the pixels that show anomalous

behaviors along time. UCL and LCL are calculated independently

for each pixel as the ±3� variation around the average score of

the corresponding pixel.

(6) Deterioration of the parchment – The deterioration of the parch-

ment was  simulated by degrading the 3-way arrays that

had previously had white noise included. A Gaussian shape

modification with predetermined size was added to  each multi-

spectral image of the cube. All wavelengths were interested by

the degradation: the intensity of the Gaussian shape increased

from visible to IR in order to  simulate the parchment deteri-

oration spectra described by  Bearman et al. [9]. The Gaussian

deterioration was located at the pixel with coordinates x =  400

and y  = 400 on the original image: the intensity of the dete-

rioration is  therefore maximum in  this position and radially

decreases from this position in all directions. This particular

shape allows to evaluate how the control charts are  effective

in  the identification of degradation mechanisms with spatial

diminishing effects. Three degraded 3-way arrays of increasing

intensity were built (t1, t2, t3).

(7) Monitoring of the parchment – The “virtually aged” 3-way arrays

were unfolded and centered using the mean calculated in  the

training session and the new data were projected onto the PC

space previously obtained. The scores of the new image cre-

ated were then compared with the LCL and UCL, calculated on

the characterization data, to  identify the pixels whose variation

exceeds the control limits. Contribution plots show the contri-

bution of each wavelength to the aged image for a  defined pixel.

These plots allow the assessment of which wavelengths were

most affected by  a  significant degradation.

(8)  Analysis of the residuals – As previously indicated, a further

principal component analysis of the degraded residuals matrix

obtained after re-projection of the degradation images along

the relevant PCs calculated from the characterization data, pro-

vided information on the eventual presence of new sources

of variation, namely the formation of new compounds on the

surface.

5. Results and discussion

During this work the main assumption was that the experimen-

tal noise present in different replicated shots comes uniquely from

instrumental noise (white noise).

Before starting the simulation, a  preliminary study was  per-

formed to identify the optimal percentage of pixels of the images

that needed to be sampled in order to obtain stable and reliable

results: preserving both the macro and micro information present

in the 3-way arrays.

Six different percentages of pixels randomly sampled from the

five 3-way arrays, namely 100% (all the pixels are considered:

this is used as a reference), 10%, 1%, 0.1%, 0.01% and 0.001% were

compared. PCA was performed on the 6 mean centered datasets

Fig. 4.  Degradation shape applied at the images surface of the 3-way array (a).

Reflectance spectra of un-aged (upper) and aged parchment over time (b); spectra

were normalized by dividing for a  white reference 3-way array obtained acquir-

ing  a  99% reflecting lambertian reflector (Spectralon®) to have reflectance spectra

between 0 and 1.

obtained from the different random samplings. Fig. 2  shows the

loadings of the first principal component for the different sam-

plings: it is  evident that the loadings preserve the information

present in  the 3-way arrays down to a  0.1% sampling.

The pattern of the 0.01% and 0.001% samplings are  different from

the others and show that these choices produce results that differ

significantly from the raw images (100% sampling). As a  conse-

quence of these results we used a  0.1% sampling percentage of  the

pixel available. This sampling procedure indirectly preserves both

macro and micro structures since the results obtained after sam-

pling are  comparable to  those obtained from the overall dataset.

5.1. Training set

The results of PCA performed on the autoscaled simulated char-

acterization images show that the first two PCs account for almost

the total amount of the original variance (99.21%).

The score-plot of PC1 and PC2 is showed in Fig. 2b: the pixels (the

objects) are well separated along PC1 in two clusters that represent

text (black pixels) and background (white pixels). We must con-

clude that the first principal component explains the differences

between text and background.

The differences observed in the score plot can be explained using

the loading plot showed in Fig. 2c.  The information accounted for

by the first component is characterized by an equal contribution of

all wavelengths. Instead PC2 has a  typical contrast effect since the

contribution of the farthest IR and visible wavelengths are opposed:

it has a  positive contribution particularly at 970, 980 and 990 nm

and a  negative contribution particularly at 670 nm.
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Fig. 5. Images of the degraded parchment (t1:  a′ , t2: a′′ , t3: a′ ′ ′); PC1 control charts (t1: b′ ,  t2: b′′ ,  t3: b′ ′ ′); PC2 control charts (t1: c′ , t2: c′′ , t3: c′ ′ ′);  contribution plots of the

pixel  in the center of the degraded area (t1: d′ , t2:  d′′ ,  t3: d′ ′ ′).

Each 3-way characterization array was then projected onto the

PC space using the loadings of the first and the second PC. The result

is a matrix of scores filtered to account for the information corre-

sponding to the first two  PCs respectively where the 35 original

channels (35 wavelengths) have been compressed into two new

orthogonal channels (PC1, PC2).  The image obtained from the scores

along PC1 (Fig. 3a) is very similar to the original image (Fig. 1) as only

differences related to pigmented and clear areas are accounted for.

Fig. 3b illustrates the scores of the second component where PC2

accounts for a significant part of the dataset information.

5.2. Monitoring the deterioration

The deterioration of the parchment was simulated by adding to

the 3-way arrays already modified with the white noise, a  Gaus-

sian shape modification with predetermined size. The area of the

degradation covered 1600 pixels of the original image and all the

wavelengths were interested by  the degradation: the intensity of

the modification increased from visible to IR (Fig. 4b). The spatial

intensity of the degradation is a Gaussian surface whose maximum

intensity is located in  the pixel of coordinates x = 400 and y  =  400 of

the original image as shown in Fig. 4a. Parchment degradation was

spatially modulated as a Gaussian surface since we want to focus

the degradation within a region of interest, with an effect decreas-

ing homogeneously from the center of the Gaussian surface to  the

borders; in this way it is possible to evaluate if control charts can

detect increasing levels of degradation and how they behave at the

border.

In  the simulation of the degradation process, the intensity and

the area of the Gaussian surface were linearly increased over time,

providing three new 3-way arrays of progressively more deterio-

rated images (t1, t2, t3; Fig. 5a).

Each degraded 3-way array was  projected onto the PC space pre-

viously calculated from the characterization images and the scores

of the PCs  were compared with the UCL and LCL limits. The She-

whart control charts for PC1 and PC2 are reported in  Fig. 5b  and

c respectively. These images show how the control chart is able

to precisely identify the degradation process, either with respect

to PC1 and PC2:  black pixels correspond to out-of-control pixels,

namely pixels beyond the LCL for PC2 and the UCL for PC1. The

highlighted areas in  the control charts correspond perfectly to the

simulated degraded areas, and the charts show how the degrada-

tion correctly increases along time.

There are few out-of-control pixels outside the degraded area.

These are false alarms and are caused by the natural variability of

the imaging system. Since the number of analyzed pixels in  the

image is  very large (n = 1,240,800), the probability that few false

alarms are present is also quite large. Nevertheless the false alarms

do not  show a  systematic behavior and they are  typically spread all

along the image. This explains the importance of controlling very

precisely the acquisition of the images and the matching and char-

acterization steps, that permit an accurate account of all sources of

natural variability in the experimental system when it is in-control

conditions.

The contribution plots in Fig. 5d show which wavelengths are

affected by the degradation process of a specific pixel. They can be
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Fig. 6. PC1 control chart of the degradation at t3 with the detection of the vanishing

of  the degradation effect (black pixels).

calculated for each pixel of the image. In the present case, most

of the wavelengths contribute to the perceived degradation. This

is illustrated in Fig. 5d, which shows the contribution plot for the

pixel of coordinates x =  400 and y = 400, namely the center of the

degradation ellipsoid. Observing the contribution plots (Fig. 5d) it

is evident that the contribution plot of the degraded pixel has the

same trend of the degraded spectrum (Fig. 4b).

As the reflectance spectrum decreases the higher the values

observed on the contribution plot.

Control charts also detected the vanishing of the degradation

effect at the border of the Gaussian shape used. Fig. 6 reports a

particular of PC1 control chart of the degradation at t3: grey pixels

correspond to  out of control pixels, i.e.  beyond UCL, while black

pixels represent pixels that are  close to the UCL but which are still

in  control, i.e. beyond 2/3 ×  UCL.

The out-of-control situations identified by this procedure corre-

spond to pixels showing an effect due to the degradation that can be

explained looking at the loadings of the significant PCs  calculated

from the characterization images: this means that the degrada-

tion mechanism involves structures and species that were already

present during the characterization.

5.2.1. Principal component analysis of the residuals of the

degradation analyses

With the aim of further investigating the effects of the degra-

dation process, a  new PCA was performed on the residuals

of the degraded images obtained by  subtracting the informa-

tion accounted for by the first two PCs (calculated from the

characterization images) from the degraded images. As previ-

ously stated, the residuals of the degraded images can contain

the information not accounted by  the two  PCs that con-

tain the systematic information: if  the degradation involves

species and structures that  were not present during the char-

acterization, this information cannot be accounted for by the

relevant PCs that were built just on the characterization

data.

The first principal component accounts for 62% of the original

variance and was considered the only relevant PC. PC1 is mainly

constituted by the IR wavelengths at 990 and 950 nm.

The analysis of the residuals identifies degraded areas only for

the third virtual degradation where the aging process was  more

intense. The first and the second cases do  not evidence unusual

distribution of the residuals. Fig. 7 illustrates the projection of the

Fig. 7.  Scores of the first component of the residuals of the  degradation at t3.

scores of the first principal component of the residuals for the

degradation image at t3. As it can be observed, the only informa-

tion present is related to the degradation. The other part of the

image does not show structured information and, for example, the

symbols present on the original DSS are not  represented as their

information is accounted for by the first two PCs employed for

the monitoring. The elliptical spot present in  the figure that cor-

responds to the degraded area, is due to  changes of the spectra that

are not  accounted for by the two PCs calculated on the character-

ization images. This area shows that a  new shape of  the spectra

has originated from the simulated degradation. This new shape of

the spectra can normally be associated with the formation of  new

species on the degraded surface. In the present case, the change

of the shape corresponds to the spectra of the Gaussian surface

that was artificially added to the original image to  simulate the

degradation.

6. Real case application

The developed technique was  applied to  a  new piece of  commer-

cially manufactured modern parchment using a LED multispectral

imaging to  analyze a  sample of parchment before and after a  degra-

dation treatment. Fig. 8a represents the parchment sample used:

some signs were drawn on the surface to  help alignment and the

evaluation of degradation of both parchment and ink. Thirty-three

3-way arrays of multispectral images at 13 different wavelengths

from UV–vis–NIR were collected for the training session. Then a

simulation of accelerated deterioration of the parchment was per-

formed under controlled conditions for accelerated aging in a  PGC

(parameter generation and control) aging chamber at 80 ◦C and 50%

relative humidity for 6 h. One hour after the accelerated aging was

completed the parchment was  imaged under the same instrumen-

tal conditions used for the training. The parchment did not  show

changes detectable by the human eye. The procedure previously

described for the simulated data was applied to build the con-

trol charts. The control charts for the first 2 PCs are represented

in Fig. 8e and f and blue and red pixels in  the charts correspond

to  out-of control points of the parchment: blue pixels represent

regions that  exceed the LCL and red pixels are the regions that

exceed the UCL. White pixels correspond to in-control points. The

large number of red and blue pixels show the evidence that some

degradation took place. The wavelengths mainly affected by the

degradation can be  identified by means of the contribution plot of

PC1 (Fig. 8b) that shows the contribution plot for the blue pixel of

coordinates x =  400 and y =  600: the band at 365 nm is  the one most
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Fig. 8. Parchment image at  365 nm (a); un-aged and 6  h  aged parchment spectrum for the  pixel of coordinates x =  400  and y =  600 (b); contribution plot of PC1 for the  pixel of

coordinate x  = 400 and y  =  600 (c); contribution plot of PC2 for the pixel of coordinates x = 400 and y =  600 (d); and control chart of the first (e) and the second component (f).

affected by degradation since it shows the largest negative contri-

bution. Blue pixels in Fig. 8e  show a small reflectance at 365 nm,

while red pixels show an opposite behavior. Fig. 8d represents the

spectra of the same pixel before and after degradation: the con-

tribution plot of PC1 and the degraded spectrum have the same

behavior.

The contribution plot of PC2 of the same pixel in  Fig. 8c shows

why the pixel is out-of-control in the corresponding chart (Fig. 8f).

In Fig. 8f wide areas of the image contain red pixels, which exceed

the UCL: these pixels are characterized by  a  larger reflectance

towards the IR region (largest positive contribution in  the contri-

bution plot of PC2). The two blue circles in the upper side of the

chart of PC1 and PC2 represent the holes that were made after the

characterization to put the parchment in the oven for the degrada-

tion.

7. Conclusions

The aim of this project is the development of a  non-invasive

technique based on multispectral imaging for monitoring the con-

servation of cultural heritage objects.

The simulation shows that the control charts built on the rel-

evant PCs are able to accurately detect the degradation process.

In the first two  simulated data scenarios, the degradation was not

visible to  the human eye, but could be  detected by the algorithm.

The contribution plots help the analyst to  determine which wave-

lengths are involved in  the assessment of the degradation process.

PCA performed on the residuals matrix of the degraded images

enabled the identification of effects on the surface not accounted for

by the PCs previously calculated on the characterization data, i.e.

spectral evidence related to the possible occurrence of structural
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changes of the sample surface because of the aging treatment and

not just a decrease/increase of the intensity related to the species

originally present on the surface.

A crucial step to make this methodology work in a  real applica-

tion is to collect an appropriate training set to measure the natural

variability of the system: if the natural variability is  not correctly

assessed false alarm will be obtained. In the present case 5 charac-

terization 3-way arrays were considered sufficient since the natural

variability was simulated by  the addition of a white noise of known

entity. A more relevant number of replications should be collected

during the characterization phase to assess the actual noise struc-

ture in real applications.

The results of the simulations and of the real application are

encouraging: the proposed approach could be a good strategy for

a fast and accurate control of cultural heritage goods preservation

state. Today, there are  many types of multispectral imagers that

are employed in  several fields from biomedicine to industry, from

biology to cultural heritage conservation: this technique can be a

useful tool and can be applied to any kind of surface that needs to

be monitored.
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